halstrup walcher

Incertezza di misura 1)	±1% del campo di misura
Influenza della temperatura	0,04 %/K (1060°C)
Temperatura di calibrazione	22°C ± 4K
Temperatura di lavoro	1060°C
Temperatura di magazzino	-1070°C
Stabilità del segnale	0,3 hPa/anno
Riduzione	0850 m sopra il livello del mare (solo BA 1000) (da indicare al momento dell'ordine)
Potenza assorbita	3 VA circa
Passacavi	2 x PG 7 (corpo senza display) 2 x PG11 (corpo con display)
Grado di protezione	BA 1000: IP53; AD 1000: IP 54
Peso	0,6 kg circa
Attacchi di pressione ²⁾	per tubo flessibile DN 6 mm
Prove	CE/UKCA

 $[\]overline{}^{1)}$ Riferimento \pm 0,5 hPa rispetto al livello del mare

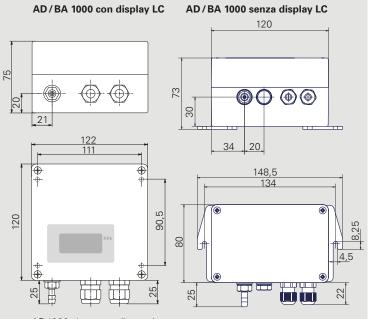
²⁾ AD 1000: 1 attacco di pressione, BA 1000: senza attacco di pressione

Prodotto	Campo di misura	Α
AD 1000	050 kPa	50A
	0100 kPa	100A
	80120 kPa	80A
	90110 kPa	90A
	1000 kPa	0A
BA1000	80120 kPa	80B
	85115 kPa	85B
	90110 kPa	90B
	95 115 kPa	95B

$010 \text{ V } (R_{L} \ge 2 \text{ kΩ})$	1
$020 \text{ mA } (R_{L} \leq 500 \Omega)$	0
$420 \text{ mA } (R_{L} \le 500 \Omega)$	4
Alimentazione	С
24 V D C + 20 % /- 15 %	24D
24 V AC ± 10% (50/60 Hz)	24A
115 VAC ± 10% (50/60 Hz)	115
230 V AC ± 10% (50/60 Hz)	230

Uscita

Display LC	D
senza	0
a 3 ½ cifre	3
Riduzione 3)	E
senza	0
dati espressi in metri (p. es. 2 m) 3)	
solo per BA 1000	
Certificato di taratura	F
senza	0
senza Certificato di taratura di fabbrica	0 W


Codice di ordinazione	Α	В	С	D	E	F
AD-BA 1000						-

AD/BA 1000

Caratteristiche / vantaggi

- · Trasduttore di pressione assoluta preciso
- · AD: per pressione assoluta
- BA: per pressione barometrica
- Elevata precisione e stabilità a lungo termine
- Deriva termica dello zero ed isteresi ridotte, elevata indipendenza dalla temperatura
- Possibilità di regolare in fabbrica (ridurre) il display all'altitudine del luogo d'installazione secondo DIN ISO 2533 (solo BA 1000 – opzione)

AD 1000: 1 attacco di pressione BA 1000: senza attacco di pressione

MISURATORI DI PRESSIONE ASSOLUTA

Per definire la pressione barometrica è necessario effettuare una misura della pressione assoluta. La pressione attuale viene confrontata con il vuoto. Mentre la misura della pressione barometrica rileva solo le pressioni ambientali (che dipendono dalle condizioni meteorologiche), ovvero circa $1\,013,25\,hPa\pm50\,hPa$, con la classica misura della pressione assoluta è possibile riferire al vuoto anche altri valori di pressione (ad esempio $75\,hPa$), a seconda del campo di misura selezionato.

Prodotti	AD 1000	BA 1000
		36.3
Funzioni	Trasduttore di pressione assoluta	Trasduttore barometrico
Campo di misura	050 kPa 0100 kPa 80120 kPa 90110 kPa 1000 kPa	80 120 kPa 85 115 kPa 90 110 kPa 95 115 kPa
Incertezza di misura 1)	±1% del campo di misura	
Display	a 3 ½ cifre (opzione)	

 $^{^{1)}}$ Riferimento \pm 0,5 hPa rispetto al livello del mare

ACCESSORI

Certificato di taratura DAkkS, tedesco Certificato di taratura DAkkS, inglese Certificato di taratura di fabbrica (ISO) Tubo flessibile in silicone ID 5 mm, OD 9 mm, rosso (indicare la lunghezza richiesta)	Codice art. 9601.0003 9601.0004 9601.0002 9601.0160
Tubo flessibile in silicone ID 5 mm, OD 9 mm, blu (indicare la lunghezza richiesta)	9601.0161
Tubo flessibile in Norprene (indicare la lunghezza richiesta)	9061.0132
raccordo a Y per connessione tubi flessibili	9601.0171

APPLICAZIONE

La misura precisa della pressione barometrica trova ad esempio applicazione nelle previsioni meteorologiche. Ma anche negli impianti di climatizzazione la pressione barometrica attuale serve come riferimento per evitare eccessive differenze di pressione, ad esempio nelle aree di ingresso o nelle porte a lama d'aria.

La misura precisa della pressione assoluta è necessaria in numerosi processi scientifici e produttivi, laddove si richiede un valore di pressione di processo (indipendentemente dalle condizioni meteorologiche), ad esempio per compensare la pressione nelle misure della portata volumetrica.

